Designing Grit: Discovering Features Towards Supporting
Novice Programmer DevOps Integration

Tyrone Justin Sta Maria
De La Salle University
Manila, Philippines
tyrone_stamaria@dlsu.edu.ph

Jordan Aiko Deja*
De La Salle University
Manila, Philippines
jordan.deja@dlsu.edu.ph

ABSTRACT

DevOps is usually an industry approach that is practiced by
seasoned and experienced programmers and developers. In
most university settings especially in the Philippine context,
DevOps is not usually part of the curriculum and in some cases
are only introduced to learner programmers as an elective or as
bonus material. We refer to these students in computing degree
programs starting out in learning programming, as novice
programmers. Upon graduation, these developers transition
into industry roles where they are expected to be familiar with
DevOps practices [18]. In most cases, they are not prepared,
and fortunately, a great number of them are given training
before fully transitioning into their hired roles. In this paper,
we attempt to discover and design an intervention mechanism
that can assist and prepare novice programmers to easily learn
DevOps at an early stage. We gathered data and insights
from novice programmers and inquired into their pains and
struggles in learning and practicing DevOps. To help them
in this process, we propose Grit, a prototype tool to support
novice programmers in integrating DevOps. Initial insights
provided affordances and design elements for a version control
prototype with targetted intervention features. In the long run
we intend to discover more insights involving the other stages
in DevOps beyond version control.

Author Keywords
DevOps; novice programmers; programmer support

CCS Concepts
*Human-centered computing — Collaborative and social
computing systems and tools;

*Also affiliated with University of Primorska, Koper, Slovenia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

AsianCHI ’20, April 25, 2020, Honolulu, HI, USA
© 2020 ACM. ISBN 978-1-4503-8768-2/20/04. .. $15.00
DOI: https://doi.org/10.1145/3391203.3391214

Gavin Raine Dizon
De La Salle University
Manila, Philippines
gavin_dizon @dlsu.edu.ph

41

Vince Anthony Esquivel
De La Salle University
Manila, Philippines
vince_esquivel @dlsu.edu.ph

Unisse Chua
De La Salle University
Manila, Philippines
unisse.chua@dlsu.edu.ph

INTRODUCTION AND RELATED WORK

DevOps is the evolution of the software development life cycle
where development and operations are integrated together for
faster delivery [4, 13]. Initially, [12] suggested DevOps to
follow four dimensions: Culture, Automation, Measurement
and Sharing. Later on, a new dimension Lean was included
to the approach renaming it to CALMS [17]. These four
dimensions agree with the four pillars of DevOps defined by
[6] which is CATS - Collaboration, Affinity, Tools and Scaling.

According to the 2019 Accelerate State of DevOps Report
[7], businesses have been shifting to DevOps with roughly
26% of over 31,000 respondents working in a DevOps team.
However, DevOps is usually not included in the course cover-
age of software engineering courses in higher education [2]
despite recent studies that push for introducing DevOps into
the curriculum [5, 14]. Introductory programming courses
for novice programmers tend to focus on an individual’s logic
formulation skills and understanding of basic programming
concepts first. In terms of outputs and expectations, novice
programmers are expected to produce deliverables done either
individually or in pairs. However, when working on bigger
projects, novice programmers often struggle on dividing tasks
into small segments. They tend to look at the overall task as
a whole and solve different tasks simultaneously. Aside from
this, they also suffer from a range of struggles that are either
cognitive, social development, external commitments and cul-
tural perceptions, which have led these novice learners to poor
performance in programming [20]. Collaborative program-
ming and culture is usually introduced later in the curriculum
[2]. However, to effectively implement DevOps, establishing
the culture is critical. Since programming is introduced early
on as an individualistic and competitive environment [19],
changing this view later on can pose as a challenge.

Teague et. al. [20] evaluated collaborative learning between
novice programmers and found that it enhances their percep-
tion of programming’s difficulty, their enjoyment, and their
confidence. This leads to higher retention, deeper learning,
and enhanced confidence when learning programming con-
cepts. These perceptions are also influenced by different as-

https://doi.org/10.1145/3391203.3391214

pects such as gender, domain knowledge, experience, and
stereotypes. This is supported by Tissenbaum [21] when they
found users shift from unproductive to productive states using
the Divergent Collaboration Learning Mechanisms (DCLM)
framework. The study also found out that interactions with
others played an important role in transitioning to productive
states of novices. In this paper, we focus on the understanding
and evaluating the perception of DevOps of novice program-
mers in the Philippines. First, we attempt to measure and
assess what initial knowledge novice programmers have about
DevOps. We do this investigation in reference to the DevOps
CALMS approach [9, 17] as aligned with the CATS pillars
by [6]. We then attempt to analyze the different opinions of
novice programmers with regards to integrating DevOps in
their processes. We do this through affinity and scenario map-
ping in order to discover what possible interventions we can
introduce to help them in their pains and struggles. Lastly,
we reflect on how we can design and evaluate a tool that will
support novice programmers in the different phases of the
DevOps practice.

METHOD

The general methodology of this research follows the approach
by [16] where we gathered initial user data and performed
affinity analysis on the results. The process of extracting
insights and deriving guidelines for novices follows the work
of [3, 10, 8] where they investigated novice programmers and
came up with design guidelines that lead to coming up with
prototype features as well.

Participants

We recruited 50 undergraduate students enrolled in a comput-
ing degree program in several Philippine universities through
convenience and snowball sampling. Participants should only
be starting their first formal programming course in their de-
gree program. Inclusion criteria of a novice programmer was
based on the guidelines by [19]. Majority (N=35) of the par-
ticipants were male and the average age is 19 years old.

Study Protocol and Data Analysis

The questionnaire was sent out using an online Google Form.
In addition to their demographics (i.e. age, sex, domicile), we
also inquired about their programming experience during their
junior and senior high school years and how many years they
have been programming. The main questionnaire composed
of a mix of Likert-style and open-ended questions that aim to
(1) perform a diagnostic, measuring the initial knowledge of
novice programmers regarding DevOps, (2) assess their open-
ness towards learning DevOps and (3) record their insights
on learning about DevOps. The questionnaire was developed
following the CALMS approach by [17] and was further veri-
fied and organized following the CATS pillars of DevOps by
[6]. The Likert-style questions are measured using 4 levels
with 1 for strongly disagree and 4 for strongly agree. The
list of questions can be found in the project website!'. Both
quantitative and qualitative answers were then processed to
derive guidelines and insights that will be used to design an

1http ://comet.dlsu.edu.ph/grit/questions

42

AFFINITY MAP

Language Specific help on syntax
support 2 codeblocks for gt

teams know which
branch they are
using

WMentorship.
Support

Chatwitha
Mentor

pink; category
yellow: nsight
ue: idea for prototype.

Figure 1. Affinity diagram of open-ended questions

initial software prototype and its features. We wanted to in-
vestigate how open novice programmers are to the practice of
DevOps and on how much they do and they do not know about
it. For this, we looked into their answers in the survey and did
a comparative analysis of their responses from the questions.

Affinity and Scenario Mapping

Some of the questions required qualitative insights in the form
of essays and long texts which need to be analyzed properly.
We used an affinity map to categorize the different types of
support needed following the steps defined by [10, 3]. There
were at least two rounds of affinity mapping done by two
members of the research team. We grouped their insights into
three color codes for easy referencing: pink for the support
category, yellow for the sample support insight, and blue for
an implementation idea for the prototype (See 1). From the
affinity map we proceeded to doing scenario mapping where
we derived five types of support categories that the respondents
needed.

RESULTS AND FINDINGS

We were able to analyze and visualize the insights of our
participants.The individual results can be found as listed in
our project website> More than half of the respondents are
confident in working regardless of whether they are alone,
with a partner, or with a team. However, most respondents
prefer having more people to work with, than having to work
alone. In contrast to this, the confidence levels of novice pro-
grammers are higher when asked about their capabilities in
problem-solving. 54% find it more difficult to solve prob-
lems when working alone. Concerning this, majority of the
respondents find it easier to work with teammates. From the
study we also looked at the familiarity of novice programmers
with the different DevOps tools as seen in Figure 2. Major-
ity (58%) are not familiar with the various DevOps tools in
general. However, more than half were familiar with GitHub.
This shows that novice programmers are unaware that version
control is essential to the culture of DevOps [6]. In terms of

2http ://comet.dlsu.edu.ph/grit/results

http://comet.dlsu.edu.ph/grit/questions
http://comet.dlsu.edu.ph/grit/results

Familiarity with DevOps Tools

GitHub m 28.0% 26.0%

0%

Strongly disagree [N

16 0%

50%

I ooy o

1 2 3 4

25% 75% 100%

Figure 2. Participants’ familiarity with DevOps tools based on a 4-point
Likert-style question

communication, half of the respondents tend to use use pro-
fessional communication software such as Slack and Google
Hangouts when working with peers. If we wish to further
analyze the corresponding DevOps culture, we can see that
novice programmers think that DevOps is important (96%) and
should be taught in school (92%). However, on the question
of whether it is important to learn DevOps to become better
in programming, almost half (44%) were unsure whether it
was relevant to become a better developer. With regards to the
collaboration culture of DevOps, we observe that majority of
the respondents (57.4%) strongly perceived it as a platform
for knowledge sharing and trust and respect. This is an in-
teresting take as it sparks the discussion that even as novices,
they understand wholly that trust and respect are key elements
in collaborative activities such as DevOps. Additionally, the
respondents perceived DevOps as a collaborative process that
involves pair programming and working in teams.

DISCUSSION

Proposed Prototype Features

Using the insights from the affinity maps, we identified sup-
port categories that the novice programmers believe would be
helpful to them in learning DevOps. For now, we only intend
to cover the Version Control (VC) phase in DevOps since VC
is one of the initial concepts introduced to a developer when
starting out in DevOps[6, 11, 15]. These support categories
and their equivalent design features can be seen in Table 1.
From these support categories we came up with design fea-
tures and translated them into a VC prototype. We call this
proposed system as Grit. It will have the derived features seen
in table 1. We have designed a mock-up that can be seen in
our project website?. The version control module is based
on GitHub desktop is intended to run git commands such as
pull, push, and commit. The Virtual Assistant shall serve as
a guided walkthrough for the git commands and its functions.
Additionally, the Command-Line feature shall allow the users
to execute git commands with predictive text. Likewise, the
Coachmarks shall enable first time users to navigate through
the system easily. On the other hand, the practice with Code-
blocks feature shall help users to practice and understand the
basic git commands. Lastly, the Find-a-Coach feature shall
be an online mentoring search tool that allows novices to find
a mentor that guiding them through their DevOps process

3http ://comet.dlsu.edu.ph/grit/screenshots

43

Support Category \ Derived Features

Command Line with Predictive
Text

Language-Specific

Communication- Live-Edit, Team chat
Specific
Mentorship Support | Find-a-coach

Virtual Assistant
Coachmarks, Practice with Code-
blocks

Table 1. Identified Support Categories and their Corresponding Fea-
tures based on the Affinity Maps

Process (How to)
Personal Support

real-time. With these proposed features, we seek to investi-
gate whether these novices can be accustomed to the Version
Control processes in DevOps but these would still have to be
verified through further tests and experiments.

CONCLUSION AND FUTURE WORK

In this study, we were able provide an early understanding
on the readiness of novice programmers to do DevOps. We
were able to inquire into their insights considering the CALMS
approach and CATS pillars. We extracted and analyzed re-
spondent insights into support categories that may potentially
support novice programmers in the Version Control phases
of DevOps. This allowed us to understand their pains and
struggles but this is still subject to further inquiry and valida-
tion. Lastly, we were able to create a mock-up design of Grit
these novice devops programmers. Since the study focused on
novices and on the Version Control phase of DevOps only, we
believe it would be an interesting approach to gather and under-
stand the insights of adept and more experienced programmers
as well in the several stages of the DevOps process. This way,
we could do a retrospective approach on the pains and strug-
gles that we intend to investigate. The same focus can also be
done on expert DevOps practitioners. The study can take an-
other approach in inquiring into their perceived effectiveness,
level of engagement, and other factors that can be attributed
to their readiness to do DevOps. A participatory study can
also be done to review and evaluate the proposed features of
Grit. Since DevOps involves Software Industry practices, we
can also do an investigation and cross-comparison of novice
programmer insights with experienced industry practitioners
with the help of the Functionality, Usability, Supportability,
Reliability, Performance (FURPS) model in practice [1]. The
study mainly focused on the novice programmers’ familiarity
of DevOps practices and VC tools such as Git. We believe that
we should also take into account the respondents’ familiar-
ity with other DevOps phases like build servers, deployment
platforms etc.

REFERENCES
[1] Rafa E Al-Qutaish. 2010. Quality models in software
engineering literature: an analytical and comparative
study. Journal of American Science 6, 3 (2010),
166-175.

[2] Matthew Bass. 2016. Software Engineering Education in
the New World: What Needs to Change?. In 2016 IEEE

http://comet.dlsu.edu.ph/grit/screenshots

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

29th International Conference on Software Engineering
Education and Training (CSEET). 1IEEE, 213-221.

Hugh Beyer and Karen Holtzblatt. 1999. Contextual
design. interactions 6, 1 (1999), 32—-42.

Evgeny Bobrov, Antonio Bucchiarone, Alfredo
Capozucca, Nicolas Guelfi, Manuel Mazzara, and
Sergey Masyagin. 2019. Teaching DevOps in academia
and industry: reflections and vision. arXiv preprint
arXiv:1903.07468 (2019).

Jean-Michel Bruel, Manuel Mazzara, and Bertrand
Meyer. 2019. Software Engineering Aspects of
Continuous Development and New Paradigms of
Software Production and Deployment. Springer.

Jennifer Davis and Ryn Daniels. 2016. Effective
DevOps: building a culture of collaboration, affinity,
and tooling at scale. " O’Reilly Media, Inc.".

Nicole Forsgren, Dustin Smith, Jez Humble, and Jessie

Frazelle. 2019. 2019 Accelerate State of DevOps Report.

https://cloud.google.com/blog/products/devops-sre/the-
2019-accelerate-state-of-devops-elite-performance-
productivity-and-scaling

Judith Good and Kate Howland. 2017. Programming
language, natural language? Supporting the diverse

computational activities of novice programmers. Journal
of Visual Languages & Computing 39 (2017), 78-92.

Joonas Hamunen and others. 2016. Challenges in
adopting a Devops approach to software development
and operations. (2016).

Karen Holtzblatt, Jessamyn Burns Wendell, and Shelley
Wood. 2005. Rapid contextual design: a how-to guide to
key techniques for user-centered design. Ubiguity 2005,
March (2005), 3-3.

Jez Humble and Gene Kim. 2018. Accelerate: The
science of lean software and devops: Building and
scaling high performing technology organizations. IT
Revolution.

Jez Humble and Joanne Molesky. 2011. Why enterprises
must adopt devops to enable continuous delivery. Cutter
IT Journal 24, 8 (2011), 6.

44

[13]

[14]

[15

—

[16]

[17

[

[18

—

(19]

(20]

(21]

Michael Hiittermann. 2012. DevOps for developers.
Apress.

Christopher Jones. 2018. A Proposal for Integrating
DevOps into Software Engineering Curricula. In
International Workshop on Software Engineering
Aspects of Continuous Development and New Paradigms
of Software Production and Deployment. Springer,
33-47.

Gene Kim, Jez Humble, Patrick Debois, and John Willis.
2016. The DevOps Handbook:: How to Create
World-Class Agility, Reliability, and Security in
Technology Organizations. IT Revolution.

Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger,
and Samir Chatterjee. 2007. A design science research

methodology for information systems research. Journal
of management information systems 24, 3 (2007), 45-77.

C Riley. 2014. How to Keep CALMS and Release
More! Logentries blog. Online. (2014).

Christopher Scaffidi. 2018. Employers needs for
computer science, information technology and software
engineering skills among new graduates. International

Journal of Computer Science, Engineering and
Information Technology 8, 1 (2018), 1-12.

Donna Teague and Raymond Lister. 2014. Longitudinal
think aloud study of a novice programmer. In
Proceedings of the Sixteenth Australasian Computing
Education Conference-Volume 148. Australian
Computer Society, Inc., 41-50.

Donna Teague and Paul Roe. 2008. Collaborative
learning: towards a solution for novice programmers. In
Proceedings of the tenth conference on Australasian
computing education-Volume 78. Australian Computer
Society, Inc., 147-153.

Mike Tissenbaum. 2020. I see what you did there!
Divergent collaboration and learner transitions from
unproductive to productive states in open-ended inquiry.
Computers & Education 145 (2020), 103739.

https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling

	Introduction and Related Work
	Method
	Participants
	Study Protocol and Data Analysis
	Affinity and Scenario Mapping

	Results and Findings
	Discussion
	Proposed Prototype Features

	Conclusion and Future Work
	References

