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ighly Pathogenic Avian Influenza A (H5N6) is a 

mutated virus of Influenza A (H5N1) and a new 

emerging infection that recently caused an outbreak 

in the Philippines. The 2017 H5N6 outbreak 

resulted in a depopulation of 667,184 domestic 

birds. We incorporate half-saturated incidence and optimal 

control in our mathematical models in order to investigate three 

intervention strategies against H5N6: isolation with treatment, 

vaccination, and modified culling. We determine the direction 

of the bifurcation when R0=1 and show that all the models 

exhibit forward bifurcation. We apply the theory of optimal 

control and perform numerical simulations to compare the 

consequences and implementation cost of utilizing different 

intervention strategies in the poultry population. Despite the 

challenges of applying each control strategy, we show that 

culling both infected and susceptible birds is an effective control 

strategy in limiting an outbreak, with a consequence of losing a 

large number of birds; the isolation-treatment strategy has the 

potential to prevent an outbreak, but it highly depends on rapid 

isolation and successful treatment used; while vaccination alone 

is not enough to control the outbreak. 
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1. INRODUCTION 

 

 

Avian influenza is a highly contagious disease of birds caused 

by infection with influenza A viruses that circulate in domestic 

and wild birds (WHO 2020). Some avian influenza virus 

subtypes are H5N1, H7N9 and H5N6, which are classified 

according to combinations of different virus surface proteins 

hemagglutinin (HA) and neuraminidase (NA). This disease is 

categorized as either Highly Pathogenic Avian Influenza (HPAI), 

which causes severe disease in poultry and results in high death 

rates, or Low Pathogenic Avian Influenza (LPAI), which causes 

mild disease in poultry (WHO 2020). 

 

As reported by the World Health Organization (WHO), H5N1 

has been detected in poultry, wild birds and other animals in over 

30 countries and has caused 861 human cases in 16 of these 

countries and 455 deaths. H5N6 was reported emerging from 

China in early May 2014 (Joob and Viroj 2015). H5N6 has 

replaced H5N1 as one of the dominant avian influenza virus 

subtypes in southern China (Bi et al. 2016). In August 2017, 

cases of H5N6 in the Philippines resulted in the culling of 

667,184 chicken, ducks and quails (OIE 2020). 

 

Due to the potential of avian influenza virus to cause a pandemic, 

several mathematical models have been developed in order to 

test control strategies. Several studies included saturation 
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incidence, where the rate of infection will eventually saturate, 

showing that protective measures have been put into place as the 

number of infected birds increases (Capasso and Serio 1978). 

With half-saturated incidence, it includes the half-saturation 

constant, which pertains to the density of infected individuals 

that yields 50% chance of contracting the disease (Shi et al. 

2019). When half-saturated incidence is included, the effect is a 

significantly lower peak of the total number of infected humans 

compared to the case when half-saturated incidence is not 

included (Chong et al. 2013). However, when half-saturation is 

included, the disease takes longer to die off. We are thus using 

half-saturated incidence to investigate the effects of outbreaks 

that may have a long tail. Some intervention strategies employed 

to protect against avian influenza are biosecurity, quarantine, 

control in live markets, vaccination and culling.  

 

Emergency vaccination, prophylactic or preventive vaccination, 

and routine vaccination are the three vaccination strategies 

mentioned by the United Nations Food and Agriculture 

Organization (UNFAO). In China, A(H5N1) influenza infection 

caused severe economic damage for the poultry industry, and 

vaccination served a significant role in controlling the spread of 

this infection since 2004 (Chen 2009). UNFAO and Office 

International des Epizooties (OIE) of the World Organization for 

Animal Health suggested vaccination of flocks should replace 

mass culling of poultry as the primary control strategy during 

outbreak (Butler 2005). For this reason, many mathematical 

models focus on how vaccination could prohibit the spread of 

infection.  

 

Culling is a widely used control strategy during an outbreak of 

avian influenza virus (AIV). During the 2017 outbreak of H5N6 

in the Philippines, mass culling was implemented to control the 

spread of AIV. Gulbudak and Martcheva (2013) suggested a 

modified culling strategy, which involves culling only the 

infected birds and high-risk in-contact birds. They utilized a 

function to represent the culling rate considering both HPAI and 

LPAI. Gulbudak et al. (2014) used half-saturated incidence to 

describe the culling of infected birds. The two-host model of Liu 

and Fang (2015) showed that screening and culling of infected 

poultry is a critical measure for preventing human A(H7N9) 

infections in the long term. There is a limited understanding of 

the effects of isolation with treatment as a control strategy to 

counter the spread of avian influenza. Isolation is also used when 

adding a new flock of birds to the poultry farm in order to 

prevent the possible transmission of disease to the current flock. 

The importance of optimal-control theory in modeling infectious 

diseases has been highlighted by several recent studies. Agusto 

(2013) used optimal control and cost-effective analysis in a two-

strain avian influenza model. Jung et al. (2009) used optimal 

control in modeling H5N1 to prevent an influenza pandemic. 

Kim et al. (2018) utilized an optimal-control approach in 

modeling tuberculosis (TB) in the Philippines. Okosun and 

Smith? (2017) used optimal control to examine strategies for 

malaria–schistosomiasis coinfection. 

 

To the best of our knowledge, optimal-control theory has not 

been applied to the spread of infectious diseases with 

transmission represented by half-saturated incidence. In this 

study, we adapt the vaccination model and modify the isolation 

model of Lee and Lao (2017). We modify the isolation model by 

partitioning the outflow of birds from isolation into two 

compartments. A proportion of birds will transfer to the 

recovered population, while the remainder will return to the 

infected population. We focus on the poultry population and use 

half-saturated incidence to describe the transmission of AIV. We 

include a modified culling strategy as one of our control 

strategies and use half-saturated incidence to depict the modified 

culling of susceptible and infected birds. We apply optimal-

control theory to our three strategies — isolation-treatment, 

vaccination, and culling — and determine which among these 

strategies can inhibit the occurrence of an AIV outbreak. 

 

 

2. THE MODELS 

 

We examine three control strategies: isolation-treatment, culling, 

and vaccination. Our mathematical models are in the form of 

half-saturated incidence (HSI), which takes into consideration 

the density of infected individuals in the population that yields 

50% chance of contracting avian influenza. Mathematical 

models with half-saturated incidence are more realistic 

compared to models with bilinear incidence (Chong et al. 2013, 

Lee and Lao 2018). We present four mathematical models: a 

model without control, which describes the transmission 

dynamics of avian influenza in bird population (i.e., the AIV 

model), and three models obtained by applying the following 

intervention strategies: isolation with treatment, vaccination, 

and culling. Description of variables and parameters used in the 

models are listed in the table in Appendix A.  

 

2.1. AIV model without intervention 

 

 
Figure 1: Schematic diagram of the AIV model with half-saturated 
incidence. 

 

In the AIV model without intervention (shown in Figure 1) the 

bird population is divided into subpopulations (represented by 

compartments): susceptible birds (𝑆) and infected birds (𝐼). The 

total bird population is represented by 𝑁(𝑡) at time 𝑡 , where 

𝑁(𝑡) = 𝑆(𝑡)  +  𝐼(𝑡). The number of susceptible birds increases 

through the birth rate (Λ) and reduces through the natural death 

rate of birds (𝜇)  which are both constant parameter values. 

Infected birds additionally decrease through the disease-specific 

death rate (𝛿). 

 

The number of susceptible birds who become infected through 

direct contact is represented by 
𝛽𝑆𝐼

𝐻+𝐼
, which denotes the transfer 

of the susceptible bird population to the infected bird population. 

Note that 𝛽 is the rate of transmitting AIV and 𝐻 is the half-

saturation constant, indicating the density of infected individuals 

in the population that yields 50%  possibility of contracting 

avian influenza (Chong et al. 2013). The saturation effect of the 

infected bird population indicates that a very large number of 

infected may tend to reduce the number of contacts per unit of 

time due to awareness of farmers to the disease (Capasso and 

Serio 1978). In Figure 1, the dashed directional arrow from 𝐼 to 

the arrow from 𝑆 to 𝐼 indicates that 
𝛽𝑆𝐼

𝐻+𝐼
 is regulated by 𝐼. 

 

Based on the AIV model described above, we have the following 

system of nonlinear ordinary differential equations (ODEs): 

𝑆̇ = Λ −
𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜇𝑆, 

𝐼̇ =
𝛽𝑆𝐼

𝐻 + 𝐼
− (𝜇 + 𝛿)𝐼. 

 

2.2. Confinement with treatment strategy for infected poultry 

(isolation-treatment model) 

 

(1) 
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Figure 2: Schematic diagram of isolation-treatment model with 
HSI. 

Here, we employ the strategy of confining and treating the 

infected poultry population (which will be referred as the 

isolation-treatment strategy). Several studies concluded that 

reducing the contact rate is an effective measure in preventing 

the spread of infection into the population (Lee and Lao 2018, 

Teng et al. 2018). For the isolation-treatment model (shown in 

Figure 2), we have included the compartment representing the 

population of isolated birds that undergoes treatment (T) and the 

compartment representing the population of recovered birds (R). 

We denote the isolation rate of identified infected birds by ψ and 

the release rate of birds from isolation by γ. 

 

During isolation, we apply treatment then release birds 

afterward. These birds will either recover successfully (transfer 

to recovered population) or remain infected (return to the 

infected population) depending on the effectiveness of treatment. 

The proportion of isolated birds that have recovered is 

represented by f, while the proportion of isolated birds that have 

not recovered (and so remained infected) are represented by (1-

f). We did not consider natural recovery of poultry in our model, 

due to the high mortality rate of HPAI virus infection. 

 

The system of ODEs for the isolation-treatment model is 

 

𝑆̇ = Λ −
𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜇𝑆, 

𝐼̇ =
𝛽𝑆𝐼

𝐻 + 𝐼
+ (1 − 𝑓)𝛾𝑇 − (𝜇 + 𝛿 + 𝜓)𝐼, 

𝑇̇ = 𝜓𝐼 − (𝜇 + 𝛿 + 𝛾)𝑇, 
𝑅̇ = 𝑓𝛾𝑇 − 𝜇𝑅. 

 

2.3. Immunization of the poultry population (vaccination model) 

 
Figure 3: Schematic diagram of preventive vaccination model 
with HSI. 

We modified the vaccination model of Lee and Lao (2018) by 

splitting the birth rate (Λ)  depending on the proportion of 

vaccinated population (𝑝), as shown in Figure 3. The poultry 

population prone to H5N6 is divided into two compartments: 

vaccinated birds represented by 𝑉 and susceptible, unvaccinated 

birds denoted by 𝑆. In our vaccination model, we differentiate 

the immunized group (vaccinated) from non-immunized group 

(unvaccinated). 

We investigate the effectiveness of the vaccine not only through 

its reported efficacy (denoted by 𝜙) but also based on the waning 

rate of the vaccine (denoted by 𝜔). To represent the acquired 

immunity of the vaccinated group, the infectivity of vaccinated 

birds is reduced by a factor (1 − 𝜙) . The system of ODEs 

representing the vaccination model is 

𝑆̇ = (1 − 𝑝)Λ + 𝜔𝑉 −
𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜇𝑆, 

𝑉̇ = 𝑝Λ − (1 − 𝜙)
𝛽𝑉𝐼

𝐻 + 𝐼
− (𝜇 + 𝜔)𝑉, 

𝐼̇ =
𝛽𝑆𝐼

𝐻 + 𝐼
+ (1 − 𝜙)

𝛽𝑉𝐼

𝐻 + 𝑖
− (𝜇 + 𝛿)𝐼. 

 

2.4. Depopulation of susceptible and infected birds (culling 

model) 

 
Figure 4: Schematic diagram of depopulation or culling model 
with HSI. 

We modified the culling model of Gulbudak et al. (2014) by 

incorporating the dynamics of half-saturated incidence on the 

transmission of infection and on the culling rate for infected 

birds and for susceptible birds that are at high risk of infection. 

We define the culling function of the infected and susceptible 

birds as 𝜏𝑖 =
𝑐𝑖𝐼

𝐻+𝐼
 and 𝜏𝑠 =

𝑐𝑠𝐼

𝐻+𝐼
, respectively. The culling 

frequency is represented by 𝑐𝑠 for susceptible birds and 𝑐𝑖  for 

infected birds. The following system of ODEs represents the 

culling model: 

𝑆̇ = Λ −
𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜏𝑠(𝐼)𝑆 − 𝜇𝑆, 

𝐼̇ =
𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜏𝑖(𝐼)𝐼 − (𝜇 + 𝛿)𝐼. 

 

3. STABILITY AND BIFURCATION ANALYSIS 

 

We first analyze the AIV model without intervention. The 

disease-free equilibrium (DFE) of the AIV model (1) is 

 

𝐸𝐴
0 = (𝑆0, 𝐼0) = (

Λ

𝜇
, 0). 

 

We denote the basic reproduction number as ℛ𝐴  for the AIV 

model and obtain 

 

ℛ𝐴 =
𝛽Λ

𝛨𝜇(𝜇 + 𝛿)
. 

 

The DFE 𝐸𝐴
0 of the AIV model is locally asymptotically stable 

if ℛ𝐴 < 1 and unstable if ℛ𝐴 > 1. 

 

The endemic equilibrium for the AIV model is represented by 

 

𝐸𝐴
∗ = (𝑆∗,  𝐼∗) = (

Λ+𝐻(𝜇+𝛿)

𝜇+𝛽
,

𝛽Λ−𝜇𝐻(𝜇+𝛿)

(𝜇+𝛿)(𝜇+𝛽)
). 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 
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We can rewrite 𝐼∗ as 

 

𝐼∗ =
𝜇𝐻

𝜇 + 𝛽
(ℛ𝐴 − 1). 

 

When ℛ𝐴 ≤ 1, it follows that 𝐼∗ ≤ 0, so there is no biologically 

feasible endemic equilibrium. For ℛ𝐴 > 1, we have 𝐼∗ > 0, so 

we have an endemic equilibrium. We conclude that the AIV 

model has no endemic equilibrium when ℛ𝐴 ≤ 1, and has an 

endemic equilibrium when ℛ𝐴 > 1. It follows that reducing the 

basic reproduction number ℛ𝐴  below one is sufficient to 

eliminate avian influenza from the poultry population. 

 

As exhibited in Figure 5A, we have a bifurcation plot between 

the infected population and the basic reproduction number ℛ𝐴. 

When the basic reproduction number is below one and the DFE 

and the endemic equilibrium coexist, then we have a backward 

bifurcation. A forward bifurcation is when the basic 

reproduction number crosses one from below and the DFE 

becomes unstable while the endemic equilibrium becomes stable. 

Clearly, we have a forward bifurcation for the AIV model, 

showing that when the basic reproduction number crosses unity, 

an endemic equilibrium appears and the DFE continues to exist 

but loses its stability. 

 

We continue by investigating different strategies that can reduce 

or stop the spread of AIV. From the isolation-treatment model 

(2), the DFE is given by 

 

𝐸T
0 = (𝑆0, 𝐼0, 𝑇0, 𝑅0) = (

Λ

μ
, 0,0,0). 

 

The corresponding basic reproduction number (ℛ𝑇)  with 

respect to (2) is represented by 

 

ℛ𝑇 =
𝛽𝛬(𝜇 + 𝛿 + 𝛾)

𝐻𝜇[(𝜇 + 𝛿 + 𝜓)(𝜇 + 𝛿 + 𝛾) − (1 − 𝑓)𝛾𝜓]
. 

 

The DFE (𝐸𝑇
0)  of the isolation-treatment model is locally 

asymptotically stable if ℛ𝑇 < 1  and unstable if ℛ𝑇 > 1 . 

Consequently, we can identify some conditions on how 

confinement of infected birds affects the stability of 𝐸𝑇
0 . The 

DFE (𝐸𝑇
0) is locally asymptotically stable whenever 

 
𝛽𝛬(𝜇 + 𝛿 + 𝛾) − 𝐻𝜇(𝜇 + 𝛿)(𝜇 + 𝛿 + 𝛾)

𝐻𝜇(𝜇 + 𝛿 + 𝑓𝛾)
< 𝜓. 

 
Figure 5: Bifurcation diagram for the basic reproduction number 
for AIV, considering no control (A), isolation-treatment (B), 
vaccination (C) and culling (D). Only forward bifurcations occur. 
Note the change of scale on the vertical axis in each case. The red 
dotted curve illustrates the unstable branch of the bifurcation diagram. 

For the endemic equilibrium of the isolation-treatment model 

(2), we indicate the presence of infection in the population by 

letting 𝐼T
∗ ≠ 0 and solve for 𝑆T

∗ ,  𝐼T
∗ ,  𝑇𝑇

∗, and 𝑅𝑇
∗ . Thus, we have 

𝐸T
∗ = (𝑆T

∗, 𝐼T
∗ , 𝑇𝑇

∗𝑅𝑇
∗ ) 

= (
Λ(𝐻 + 𝐼T

∗)

𝜇(𝐻 + 𝐼T
∗) + 𝛽𝐼T

∗ , 𝐼T
∗ ,

𝜓𝐼T
∗

𝜇 + 𝛿 + 𝛾
,

𝑓𝛾𝜓𝐼T
∗

𝜇 + 𝛿 + 𝛾
), 

where  

𝐼T
∗ =

(𝜇 + 𝛿 + 𝛾)[𝛽Λ − 𝜇𝐻(𝜇 + 𝛿 + 𝜓)] + (1 − 𝑓)𝛾𝜓𝜇𝐻

(𝜇 + 𝛽)[(𝜇 + 𝛿 + 𝜓)(𝜇 + 𝛿 + 𝛾) − (1 − 𝑓)𝛾𝜓]
. 

 

Given the basic reproduction number (7) , we rewrite the 

expression 𝐼T
∗ of the isolation-treatment model as 

𝐼T
∗ =

𝜇𝐻

𝜇 + 𝛽
(ℛ𝑇 − 1). 

 

From (9), it follows that when ℛ𝑇 ≤ 1, we have 𝐼T
∗ ≤ 0  and 

there is no endemic equilibrium; however, when ℛ𝑇 > 1, we 

have 𝐼T
∗ > 0  and we have an endemic equilibrium. Thus, the 

isolation-treatment model (2) has no endemic equilibrium when 

ℛ𝑇 ≤ 1 and has an endemic equilibrium when ℛ𝑇 > 1. Hence 

there is no backward bifurcation for the isolation-treatment 

model when ℛ𝑇 < 1. 

 

In Figure 5B, we have a forward bifurcation for the isolation-

treatment model, which supports our claim. The bifurcation plot 

between the infected population 𝐼T
∗  and the basic reproduction 

number ℛ𝑇  for the isolation-treatment model shows that 

reducing ℛ𝑇 below unity is enough to eliminate avian influenza 

from the poultry population. 

 

Next, we analyze the stability of the associated equilibria of the 

AIV model with vaccination strategy (3) . The DFE and the 

basic reproduction number are 

 

𝐸𝑉
0 = (𝑆0, 𝑉0, 𝐼0) = (

Λ(𝜇 + 𝜔 − 𝑝𝜇)

𝜇(μ + ω)
,

𝑝Λ

𝜇 + 𝜔
, 0) 

and 

 

ℛ𝑉 =
𝛽𝛬(𝜇 + 𝜔 − 𝑝𝜇𝜙)

𝜇𝐻(𝜇 + 𝜔)(𝜇 + 𝛿)
. 

 

 

The DFE 𝐸𝑉
0  of vaccination model is locally asymptotically 

stable if ℛ𝑉 < 1 and unstable if ℛ𝑉 > 1. Moreover, we obtain 

some conditions for the proportion of vaccinated poultry (𝑝) 

and vaccine efficacy (𝜙), which both range from 0 to 1. 𝐸𝑉
0 is 

locally asymptotically stable whenever 

(
𝜇 + 𝜔

𝜇
) (1 −

𝜇𝐻(𝜇 + 𝛿)

Λ𝛽
) ≤ 𝑝𝜙 < 1 . 

 

For the endemic equilibrium of the vaccination model (3), we 

obtain the following: 

𝐸V
∗ = (𝑆V

∗ , 𝑉V
∗, 𝐼𝑉

∗ ), 
where  
𝑆V

∗ =
(𝐻 + 𝐼𝑉

∗ )[(1 − 𝑝)Λ[(𝐻 + 𝐼𝑉
∗)(𝜇 + 𝜔) + (1 − 𝜙)𝛽𝐼𝑉

∗] + 𝜔𝑝Λ(H + 𝐼𝑉
∗ )]

[𝜇(𝐻 + 𝐼𝑉
∗) + 𝛽𝐼𝑉

∗][(𝐻 + 𝐼𝑉
∗ )(𝜇 + 𝜔) + (1 − 𝜙)𝛽𝐼𝑉

∗]
 

 

𝑉V
∗ =

𝑝Λ(𝐻 + 𝐼𝑉
∗ )

(𝐻 + 𝐼𝑉
∗ )(𝜇 + 𝜔) + (1 − 𝜙)𝛽𝐼𝑉

∗ 

 

(7) 

 

(8) 

 

(9) 

 

(10) 
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𝐼𝑉
∗ =

−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
, 

 

such that  
𝑎 = −(𝜇 + 𝛿)[𝜇𝛽(1 − 𝜙) + (𝜇 + 𝜔)(𝜇 + 𝛽) + 𝛽2(1 − 𝜙)], 
𝑏 = 𝛽2Λ(1 − 𝜙) + 𝜇𝐻(𝜇 + 𝛿)(𝜇 + 𝜔)(ℛ𝑉 − 1)

− 𝐻(𝜇 + 𝛿)[𝜇𝛽(1 − 𝜙) + (𝜇 + 𝛽)(𝜇 + 𝜔)], 

𝑐 = 𝜇𝐻2(𝜇 + 𝛿)(𝜇 + 𝜔)(ℛ𝑉 − 1). 
 

The vaccination model (3) has no endemic equilibrium when 

ℛ𝑉 ≤ 1, and has a unique endemic equilibrium when ℛ𝑉 > 1. 

Figure 5C illustrates a bifurcation plot between the population 

of infected birds and the basic reproduction number ℛ𝑉 , 

showing a forward bifurcation. This bifurcation diagram is in 

line with our result in Theorem B.1 in Appendix B, so there is 

no endemic equilibrium when ℛ𝑉 < 1  but there is a unique 

endemic equilibrium when ℛ𝑉 > 1. In this case, reducing ℛ𝑉 

below one is sufficient to control the disease. 

 

Finally, we analyze the stability of equilibria of the AIV model 

with culling (4). The DFE for the culling model is given by 

 

𝐸C
0 = (𝑆0, 𝐼0) = (

Λ

μ
, 0), 

 

and the basic reproduction number is 

 

ℛ𝐶 =
𝛽𝛬

𝜇𝐻(𝜇 + 𝛿)
. 

 

The endemic equilibria of the culling model is determined as 

 

𝐸C
∗ = (𝑆C

∗, 𝐼C
∗) = (

Λ(𝐻 + 𝐼C
∗)

𝜇𝐻 + (𝜇 + 𝑐𝑠 + 𝛽)𝐼C
∗ , 𝐼C

∗) 

where  𝐼C
∗ =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
, 

such that  

𝑎 = −(𝜇 + 𝛿 + 𝑐𝑖)(𝜇 + 𝑐𝑠 + 𝛽), 
𝑏 = 𝜇𝐻(𝜇 + 𝛿)(ℛ𝐶 − 1) − 𝑐𝑖𝜇𝐻 − 𝐻(𝜇 + 𝛿)(𝜇 + 𝑐𝑠 + 𝛽), 
𝑐 = 𝜇𝐻2(𝜇 + 𝛿)(ℛ𝐶 − 1). 

 

For the culling model (4) , we have shown that a backward 

bifurcation does not exist when ℛ𝐶 < 1. Thus, the culling model 

(4) has no endemic equilibrium when ℛ𝐶 < 1, and has a unique 

endemic equilibrium when ℛ𝐶 > 1. 

 

In Figure 5D, we have a bifurcation diagram showing the 

infected population and the basic reproduction number (ℛ𝐶). 

We have a forward bifurcation in the plot, which is similar to the 

result stated in Theorem B.2, implying that, when ℛ𝐶 < 1, avian 

influenza will be eradicated from the poultry population.  

 

4. OPTIMAL-CONTROL STRATEGIES 

 

We now integrate an optimal-control approach in all our models: 

isolation-treatment, vaccination, and culling. 

 

4.1. Isolation-treatment strategy 

 

In applying the isolation-treatment strategy, we identify infected 

birds and isolate them at rate 𝜓. While the birds are isolated, we 

apply treatment such that a proportion 𝑓  will successfully 

recover. Our first control involves isolating infected birds with 

𝑢1 replacing 𝜓. The second control indicates the effort of the 

farmers in choosing a drug that can increase the success of 

treatment with 𝑢2  replacing 𝑓 . The isolation-treatment model 

(2) becomes 

 

𝑆̇ = Λ −
𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜇𝑆, 

𝐼̇ =
𝛽𝑆𝐼

𝐻 + 𝐼
+ (1 − 𝑢2(𝑡))𝛾𝑇 − (𝜇 + 𝛿 + 𝑢1(𝑡))𝐼, 

𝑇̇ = 𝑢1(𝑡)𝐼 − (𝜇 + 𝛿 + 𝛾)𝑇, 
𝑅̇ = 𝑢2(𝑡)𝛾𝑇 − 𝜇𝑅. 

 

We represent the rate of isolation of infected birds by control 

𝑢1(𝑡)  that is the rate 𝑢1(𝑡)𝐼  transfers from 𝐼  to 𝑇 . The 

proportion of successfully treated birds released from isolation 

is denoted by 𝑢2(𝑡). 

 

The problem is to minimize the objective functional defined by 

 

𝐽𝐼(𝑢1, 𝑢2) = ∫ [𝐼(𝑡) + 𝑇(𝑡) +
𝐵1

2
𝑢1

2(𝑡) +
𝐵2

2
𝑢2

2(𝑡)] 𝑑𝑡,
𝑡𝑓

0

 

 

which is subject to the ordinary differential equations in (12) 

and where 𝑡𝑓 is the final time. The objective functional includes 

isolation control (𝑢1(𝑡)) and treatment control (𝑢2(𝑡)), while 

𝐵1 and 𝐵2 are weight constants associated with relative costs of 

applying respective control strategies. The quadratic 

formulation of the objective functional 𝐽𝐼(𝑢1, 𝑢2) is popular and 

useful to satisfy the convexity property of the cost function 

(Agusto 2013, Jung et al. 2009, Kim et al. 2018). Given that we 

have two controls 𝑢1(𝑡) and 𝑢2(𝑡), we want to find the optimal 

controls 𝑢1
∗(𝑡) and 𝑢2

∗(𝑡) such that 

 

𝐽𝐼(𝑢1
∗, 𝑢2

∗) = min
𝒰𝐼

{𝐽𝐼(𝑢1, 𝑢2)}, 

where 

𝒰𝐼 = {(𝑢1 , 𝑢2)|𝑢𝑖: [0, 𝑡𝑓] → [𝑎𝑖 , 𝑏𝑖], 𝑖 = 1,2, is Lebesgue integrable} 

is the control set. We consider the best- and worst-case scenarios 

of isolating infected birds and giving treatment by setting the 

lower bounds to 𝑎𝑖 = 0 and upper bounds to 𝑏𝑖 = 1, for 𝑖 = 1,2. 

 

4.1.1. Characterization of optimal control for isolation-treatment 

strategy 

 

We generate the necessary conditions of this optimal control 

using Pontryagin's Maximum Principle (Pontryagin et al. 1986). 

The Hamiltonian is 

 

𝐻𝐼 = 𝐼(𝑡) + 𝑇(𝑡) +
𝐵1

2
𝑢1

2(𝑡) +
𝐵2

2
𝑢2

2(𝑡) + 𝜆𝐼1
(Λ −

𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜇𝑆) 

+𝜆𝐼2
(

𝛽𝑆𝐼

𝐻 + 𝐼
+ (1 − 𝑢2(𝑡))𝛾𝑇 − [𝜇 + 𝛿 + 𝑢1(𝑡)]𝐼) 

+𝜆𝐼3
(𝑢1(𝑡)𝐼 − (𝜇 + 𝛿 + 𝛾)𝑇) + 𝜆𝐼4

(𝑢2(𝑡)𝛾𝑇 − 𝜇𝑅), 

where 𝜆𝐼1
, 𝜆𝐼2

, 𝜆𝐼3
, 𝜆𝐼4

 are the associated adjoints for the states 

𝑆, 𝐼, 𝑇, 𝑅. We obtain the system of adjoint equations by using the 

partial derivatives of the Hamiltonian (13) with respect to each 

state variable. 

 

Theorem 4.1. There exist optimal controls 𝑢1
∗(𝑡)and 𝑢2

∗(𝑡) and 

solutions 𝑆∗, 𝐼∗, 𝑇∗, 𝑅∗  of the corresponding state system (12) 

that minimizes the objective functional 𝐽𝐼(𝑢1, 𝑢2)  over 𝒰𝐼 . 

Since these optimal solutions exist, there exists adjoint variables 

𝜆𝐼1
, 𝜆𝐼2

, 𝜆𝐼3
 and 𝜆𝐼4

 satisfying 

 

𝜆𝐼1
̇ = 𝜆𝐼1

(𝜇 +
𝛽𝐼

𝐻 + 𝐼
) − 𝜆𝐼2

(
𝛽𝐼

𝐻 + 𝐼
), 

 

𝜆𝐼2
̇ = −1 + 𝜆𝐼1

[
𝐻𝛽𝑆

(H + I)2] − 𝜆𝐼2
[

𝐻𝛽𝑆

(H + I)2] + 𝜆𝐼2
[𝜇 + 𝛿 + 𝑢1(𝑡)]

− 𝜆𝐼3
𝑢1(𝑡), 

𝜆𝐼3
̇ = −1 −  𝜆𝐼2

[1 − 𝑢2(𝑡)]𝛾 + 𝜆𝐼3
(𝜇 + 𝛿 + 𝛾) − 𝜆𝐼4

𝑢2(𝑡)𝛾, 

𝜆𝐼4
̇ = 𝜆𝐼4

𝜇, 

(11) 

 

(12) 

 

(13) 
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with transversality conditions 𝜆𝐼𝑖
(𝑡𝑓) = 0 , for 𝑖 = 1, 2, 3, 4 . 

Furthermore, 

𝑢1
∗ = min {𝑏1, max {𝑎1,

(𝜆𝐼2−𝜆𝐼3)𝐼

𝐵1
}} and 

𝑢2
∗ = min {𝑏2, max {𝑎2,

(𝜆𝐼2
− 𝜆𝐼4

)𝛾𝑇

𝐵2
}}. 

 

Proof. The existence of optimal control (𝑢1
∗, 𝑢2

∗) is given by the 

result of Fleming and Rishel (1975). Boundedness of the 

solution of our system (2) shows the existence of a solution for 

the system. We have nonnegative values for the controls and 

state variables. In our minimizing problem, we have a convex 

integrand for 𝐽𝐼  with respect to (𝑢1, 𝑢2) . By definition, the 

control set is closed, convex and compact, which shows the 

existence of optimality solutions in our optimal system. By 

Pontryagin's Maximum Principle, we obtain the adjoint 

equations and transversality conditions. We differentiate the 

Hamiltonian (13)  with respect to the corresponding state 

variables as follows: 

𝑑𝜆𝐼1

𝑑𝑡
= −

𝜕𝐻𝐼

𝜕𝑆
,
𝑑𝜆𝐼2

𝑑𝑡
= −

𝜕𝐻𝐼

𝜕𝐼
,
𝑑𝜆𝐼3

𝑑𝑡
= −

𝜕𝐻𝐼

𝜕𝑇
,
𝑑𝜆𝐼4

𝑑𝑡
= −

𝜕𝐻𝐼

𝜕𝑅
, 

with 𝜆𝐼𝑖
(𝑡𝑓) = 0  where 𝑖 = 1, 2, 3, 4 . We consider the 

optimality condition 

 
𝜕𝐻𝐼

𝜕𝑢1
= 𝐵1𝑢1(𝑡) − 𝜆𝐼2

𝐼 + 𝜆𝐼3
𝐼 = 0 and  

𝜕𝐻𝐼

𝜕𝑢2
= 𝐵2𝑢2(𝑡) − 𝜆𝐼2

𝛾𝑇 + 𝜆𝐼4
𝛾𝑇 = 0, 

 

to derive the optimal controls in (14). We consider the bounds 

of the controls and obtain the characterization for optimal 

controls as follows: 

 

𝑢1
∗ = min {1, max {0,

(𝜆𝐼2−𝜆𝐼3)𝐼

𝐵1
}} and  

𝑢2
∗ = min {1, max {0,

(𝜆𝐼2
− 𝜆𝐼4

)𝛾𝑇

𝐵2
}}. 

 

4.2. Vaccination 

 

For vaccination, the first control represents the effort of the 

farmers to increase vaccinated birds, while the other control 

describes the efficacy of the vaccine in providing immunity 

against H5N6. 𝑢3(𝑡) and 𝑢4(𝑡) replace 𝑝  and 𝜙, respectively, 

in the vaccination model (3) to obtain  

 

𝑆̇ = (1 − 𝑢3(𝑡))Λ + 𝜔𝑉 −
𝛽𝑆𝐼

𝐻 + 𝐼
− 𝜇𝑆, 

𝑉̇ = 𝑢3(t)Λ − (1 − 𝑢4(𝑡))
𝛽𝑉𝐼

𝐻 + 𝐼
− (𝜇 + 𝜔)𝑉, 

𝐼̇ =
𝛽𝑆𝐼

𝐻 + 𝐼
+ (1 − 𝑢4(𝑡))

𝛽𝑉𝐼

𝐻 + 𝑖
− (𝜇 + 𝛿)𝐼. 

 

We describe the proportion of birds that are vaccinated by the 

control 𝑢3(𝑡) and the immunity of the vaccinated population 

against acquiring the disease by 𝑢4(𝑡). We have the objective 

functional 

 

𝐽𝑉(𝑢3, 𝑢4) = ∫ [𝐼(𝑡) +
𝐵3

2
𝑢3

2(𝑡) +
𝐵4

2
𝑢4

2(𝑡)] 𝑑𝑡,
𝑡𝑓

0

 

 

which is subject to (15) . This objective functional involves 

increased vaccination 𝑢3(𝑡)  and the vaccine-efficacy control 

𝑢4(𝑡), where 𝐵3  and 𝐵4 are the weight constants representing 

the relative cost of implementing each respective control. We 

need to find the optimal controls 𝑢3
∗(𝑡) and 𝑢4

∗(𝑡) such that  

 

𝐽𝑉(𝑢3
∗ , 𝑢4

∗) = min
𝒰𝑉

{𝐽𝑉(𝑢3, 𝑢4)}, 

 

where  

𝒰𝑉 = {(𝑢3, 𝑢4)|𝑢𝑖: [0, 𝑡𝑓] → [𝑎𝑖, 𝑏𝑖],

𝑖 = 3,4, is Lebesgue integrable} 
is the control set. We consider the lower bound 𝑎𝑖 = 0 and upper 

bounds 𝑏𝑖 = 1, for 𝑖 = 3, 4. 

 

4.2.1. Characterization of optimal control for vaccination 

strategy 

 

In this case, the Hamiltonian is 

 

𝐻𝑉 = 𝐼(𝑡) +
𝐵3

2
𝑢3

2(𝑡) +
𝐵4

2
𝑢4

2(𝑡)

+ 𝜆𝑉1
((1 − 𝑢3(𝑡))𝛬 + 𝜔𝑉 − 𝜇𝑆 −

𝛽𝑆𝐼

𝐻 + 𝐼
) 

+𝜆𝑉2
(𝑢3(𝑡)Λ − (𝜇 + 𝜔)𝑉 − (1 − 𝑢4(𝑡))

𝛽𝑉𝐼

𝐻 + 𝐼
) 

+𝜆𝑉3
(

𝛽𝑆𝐼

𝐻 + 𝐼
+ (1 − 𝑢4(𝑡))

𝛽𝑉𝐼

𝐻 + 𝐼
− (𝜇 + 𝛿)𝐼). 

 

Theorem 4.2. There exist optimal controls 𝑢3
∗(𝑡) and 𝑢4

∗(𝑡) and 

solutions 𝑆∗, 𝑉∗, 𝐼∗ of the corresponding state system (15) that 

minimize the objective functional 𝐽𝑉(𝑢3, 𝑢4)  over 𝒰𝑉 . Since 

these are optimal solutions, there exists adjoint variables 𝜆𝑉1
, 𝜆𝑉2

 

and 𝜆𝑉3
 satisfying 

 

𝜆𝑉1
̇ = 𝜆𝑉1

(𝜇 +
𝛽𝐼

𝐻 + 𝐼
) − 𝜆𝑉3

(
𝛽𝐼

𝐻 + 𝐼
), 

𝜆𝑉2
̇ = −𝜆𝑉1

𝜔 + 𝜆𝑉2
(𝜇 + 𝜔 + (1 − 𝑢4(𝑡))

𝛽𝐼

𝐻 + 𝐼
)

− 𝜆𝑉3
(1 − 𝑢4(𝑡))

𝛽𝐼

𝐻 + 𝐼
, 

𝜆𝑉3
̇ = −1 + 𝜆𝑉1

[
𝐻𝛽𝑆

(𝐻 + 𝐼)2] + 𝜆𝑉2
[(1 − 𝑢4(𝑡))

𝐻𝛽𝑉

(𝐻 + 𝐼)2]

− 𝜆𝑉3
[

𝐻𝛽𝑆

(𝐻 + 𝐼)2 + (1 − 𝑢4(𝑡))
𝐻𝛽𝑉

(𝐻 + 𝐼)2

− (𝜇 + 𝛿)], 

 

with transversality conditions 𝜆𝑉𝑖
(𝑡𝑓) = 0 , for 𝑖 = 1, 2, 3 . 

Furthermore, 

𝑢3
∗ = min {𝑏3, max {𝑎3,

(𝜆𝑉1
−𝜆𝑉2

)Λ

𝐵3
}} and 

𝑢4
∗ = min {𝑏4, max {𝑎4,

(𝜆𝑉3
− 𝜆𝑉2

)𝛽𝑉𝐼

𝐵4(𝐻 + 𝐼)
}} . 

 

The proof is similar to the proof of Theorem 4.1 and can be 

found in Appendix C. 

 

4.3. Culling 

 

Finally, we administer optimal control to the culling model (4). 

Thus, we have 

 

𝑆̇ = Λ −
𝛽𝑆𝐼

𝐻 + 𝐼
−

𝑢5(𝑡)𝑆𝐼

𝐻 + 𝐼
− 𝜇𝑆, 

𝐼̇ =
𝛽𝑆𝐼

𝐻 + 𝐼
−

𝑢6(𝑡)𝐼2

𝐻 + 𝐼
− (𝜇 + 𝛿)𝐼. 

 

We represent the frequency of culling the susceptible population 

by 𝑢5(𝑡) and frequency of culling the infected population by 

𝑢6(𝑡). We have the objective functional 

(15) 

 

(16) 

 

(17) 

 

(18) 
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𝐽𝐶(𝑢5, 𝑢6) = ∫ [𝐼(𝑡) +
𝐵5

2
𝑢5

2(𝑡) +
𝐵6

2
𝑢6

2(𝑡)] 𝑑𝑡,
𝑡𝑓

0

 

 

which is subject to (18). The objective functional includes the 

susceptible and infected culling control denoted by 𝑢5(𝑡) and 

𝑢6(𝑡) , respectively, with 𝐵5  and 𝐵6  as the weight constants 

representing the relative cost of implementing each respective 

control. Hence we have to find the optimal controls 𝑢5
∗ and 𝑢6

∗ 

such that 

 

𝐽𝐶(𝑢5
∗ , 𝑢6

∗) = min
𝒰𝐶

{𝐽𝐶(𝑢5, 𝑢6)}, 

 

where  

𝒰𝐶 = {(𝑢5, 𝑢6)|𝑢𝑖 : [0, 𝑡𝑓] → [𝑎𝑖 , 𝑏𝑖],

𝑖 = 5,6, is Lebesgue integrable} 
is the control set. We consider the lower bound 𝑎𝑖 = 0 and upper 

bounds 𝑏𝑖 = 1, for 𝑖 = 5, 6. 
 

4.3.1. Characterization of optimal control for culling strategy 

 

In this case, the Hamiltonian is 

 

𝐻𝐶 = 𝐼(𝑡) +
𝐵5

2
𝑢5

2(𝑡) +
𝐵6

2
𝑢6

2(𝑡)

+ 𝜆𝐶1
(Λ − 𝜇𝑆 −

𝑢5(𝑡)𝑆𝐼

𝐻 + 𝐼
−

𝛽𝑆𝐼

𝐻 + 𝐼
) 

+𝜆𝐶2
(

𝛽𝑆𝐼

𝐻 + 𝐼
− (𝜇 + 𝛿)𝐼 −

𝑢6(𝑡)𝐼2

𝐻 + 𝐼
). 

 

Theorem 4.3. There exists optimal controls 𝑢5
∗(𝑡)  and 𝑢6

∗(𝑡) 

and solutions 𝑆∗, 𝐼∗ of the corresponding state system (18) that 

minimize the objective functional 𝐽𝐶(𝑢5, 𝑢6)  over 𝒰𝐶 . Since 

these optimal solutions, there exists adjoint variables 𝜆𝐶1
 and 

𝜆𝐶2
satisfying 

 

𝜆𝐶1
̇ = 𝜆𝐶1

(𝜇 +
𝑢5(𝑡)𝐼

𝐻 + 𝐼
+

𝛽𝐼

𝐻 + 𝐼
) − 𝜆𝐶2

(
𝛽𝐼

𝐻 + 𝐼
), 

𝜆𝐶2
̇ = −1 + 𝜆𝐶1

(
𝑢5(𝑡)𝐻𝑆

(𝐻 + 𝐼)2 +
𝐻𝛽𝑆

(𝐻 + 𝐼)2)

− 𝜆𝐶2
(

𝐻𝛽𝑆

(𝐻 + 𝐼)2
− (𝜇 + 𝛿)

−
(2𝐻 + 𝐼)𝑢6(𝑡)𝐼

(𝐻 + 𝐼)2 ), 

 

with transversality conditions 𝜆𝐶𝑖
(𝑡𝑓), for 𝑖 = 1, 2. Furthermore, 

 

𝑢5
∗ = min {𝑏5, max {𝑎5,

𝜆𝐶1 𝑆𝐼

𝐵5(𝐻+𝐼)
}} and 

𝑢6
∗ = min {𝑏6, max {𝑎6,

𝜆𝐶2
𝐼2

𝐵6(𝐻 + 𝐼)
}}. 

 

The proof can be found in Appendix D. 

 

5. NUMERICAL RESULTS 

 

The parameter values applied to generate our simulations are 

listed in the table in Appendix A. The initial conditions of the 

simulations are based on the Philippines' H5N6 outbreak report 

(OIE 2020). We set 𝑆(0) = 407 837, 𝐼(0) = 73 360, 𝑇(0) =
0, 𝑅(0), and the total population of birds 𝑁(0) = 481 197. 

 

 
Figure 6: Simulation results showing the transmission dynamics 
of H5N6 in the Philippines with no intervention strategy. We use 
initial conditions and parameter values as follows: 𝑆(0) = 407 837, 

𝐼(0) = 73 360, 𝛬 =
2060

365
, 𝜇 = 3.4246 × 10−4, 𝛽 = 0.025, 𝐻 = 180 000,  

𝛿 = 4 × 10−4. 

Previous studies suggested that the basic reproduction number 

for the presence of avian influenza without applying any 

intervention strategy was ℛ𝐴 = 3 (Mills et al. 2004, Ward et al. 

2009). We consider density-dependent transmission, where the 

contact between birds increases as the poultry population 

increases (Roche et al. 2009). We have calculated the 

transmissibility of the disease (𝛽 = 0.025) based on (5) with 

ℛ𝐴 = 3, and fixed values of Λ (birth rate), 𝜇 (natural death rate), 

𝛿 (disease induced death rate) and 𝐻 (half-saturation constant). 

Without any control strategy, avian influenza will become 

endemic in the poultry population as shown in Figure 6. After 

50 days, the population of the infected poultry exceeds that of 

susceptible poultry, with all birds eventually infected or dead. 

 

5.1 Confinement with treatment strategy 

 

Isolation of infected birds and application of treatment is a 

potential strategy to hinder an outbreak and reduce further 

spread of infection in the population. Figures 7–9 illustrate the 

effects of applying optimal control to the isolation-treatment 

strategy under different approaches. In Figure 7, we investigate 

the effects of varying the weight constant 𝐵1  and 𝐵2 , which 

represents the relative cost of implementing isolation and 

treatment controls, respectively. Figure 8 portrays the difference 

between using a constant parameter and optimal control in 

describing the spread of infection using the isolation-treatment 

strategy. Figure 9 shows the disparity of using both isolation and 

treatment to using only one control measure. 

 

As the relative cost of implementing isolation control 𝐵1  and 

treatment control 𝐵2  increases, slightly lower isolation and 

treatment rates are utilized, as illustrated in Figure 7. As we 

increase 𝐵1  and 𝐵2 , the population of the susceptible birds 

decreases (see Figure 7A) while the population of the infected 

birds increases (as shown in Figure 7B). Isolated birds increase 

significantly in the first six days, then decline afterward due to 

treatment, as portrayed in Figure 7C. Increasing the cost of 

treatment leads to slower increase of recovered birds (Figure 

7D) and slower decline of isolated birds (Figure 7C). We can 

observe that when we have lower values for 𝐵1  and 𝐵2 , the 

susceptible population has a slower decline, there are fewer 

infected and isolated birds, and recovered birds increase faster. 

Thus, we consider 𝐵1, 𝐵2 = 500,000 . Moreover, it can be 

observed that cheaper cost controls 𝐵1 and 𝐵2 (Figures 7A–D) 

should be administered at higher rates of 𝑢1 and 𝑢2 (shown in 

Figures 7E–F). 

 

(19) 

 

(20) 
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Figure 7: Application of isolation-treatment strategy with optimal 
control to the population of susceptible (A), infected (B), isolated 
(C) and recovered (D) birds along with isolation control (E) and 
treatment control (F) for varying values of 𝑩𝒊, for 𝒊 = 𝟏, 𝟐, from 

𝟏𝟎𝟎 𝟎𝟎𝟎 to 𝟗𝟎𝟎 𝟎𝟎𝟎 birds. 

With optimal control, we can possibly prevent the spread of 

H5N6 in the poultry population, as demonstrated in Figure 8. 

The red dashed line (without optimal control) is a simulation of 

the isolation-treatment model (2) where we represent the 

isolation rate and the proportion of successfully recovered birds 

by a constant parameter. The blue solid line (with optimal 

control) is a simulation of isolation-treatment model (12) where 

control parameters 𝑢1(𝑡) and 𝑢2(𝑡) are included. In Figure 8A, 

the susceptible population declines slower under optimal control 

compared to using a constant parameter. This is due to rapid 

isolation of infected birds triggering the surge in Figure 8C with 

78% isolation at the beginning, as seen in Figure 8E. It also has 

a faster increase in the recovered population, with 843,600 birds 

compared to 73,340 birds without optimal control within 100 

days, as portrayed in Figure 8D. Application of optimal controls 

𝑢1
∗(𝑡)  and 𝑢2

∗ (𝑡)  in the susceptible, infected, isolated and 

recovered population is clearly better than using constant 

parameter (Figure 8). We can observe a slower decline of 

susceptible birds, an initial reduction in infected birds and a 

delayed increase in infection. More infected birds are isolated 

(Figure 8C), and we have a higher number of birds that will  

 
Figure 8: Applying isolation-treatment strategy with optimal 
control (blue solid line) and without optimal control or using 
constant parameter (red dashed line) in the population of 
susceptible (A), infected (B), isolated (C) and recovered (D) birds. 
Optimal-control values for isolation control 𝒖𝟏 (E) and treatment 

control 𝒖𝟐 (F) over 100 days. 

recover after going through isolation (Figure 8D). Thus, using 

optimal control illustrated a more appropriate representation of 

implementing isolation-treatment strategy in controlling an 

outbreak. 

 

 
Figure 9: Isolation-treatment strategy with the optimal approach 
and with consideration of using both isolation and treatment 
control (blue solid line), using isolation control only (red dashed 
line), and using treatment only (green dashed line) to the 
population of susceptible (A), infected (B), isolated (C) and 
recovered (D) birds. 

It is evident that using isolation together with treatment showed 

better results in all populations compared to implementing 

isolation alone or treatment alone, as depicted in Figure 9. In 

applying both controls, the susceptible populations decrease 

slowly; infected birds are eliminated from the poultry 

population; and isolated birds increase within 5 days, and then 

decrease afterward, which is due to releasing of birds from 

isolation. In reality, treatment can only be applied to birds that 

have been identified as infected. In the isolation-treatment  
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Figure 10: Application of vaccination strategy with optimal control to the population of susceptible (A), vaccinated (B) and infected (C) birds 
and the increased vaccination coverage (D) and the vaccine-efficacy control (E) with varying values of 𝑩𝒊, for 𝒊 =  𝟑, 𝟒, from 𝟏𝟎𝟎 𝟎𝟎𝟎 to 

𝟗𝟎𝟎 𝟎𝟎𝟎 birds.

 
Figure 11: Applying the vaccination strategy with optimal control (blue solid line) and without optimal control or using constant parameter 
(red dashed line) in the population of susceptible (A), vaccinated (B) and infected (C) birds. Optimal-control values for vaccination prevalence 
control 𝒖𝟑 (D) and vaccine efficacy control 𝒖𝟒 (E) over 300 days.

model, treatment cannot be performed without isolation. Hence, 

the continuous increase in the infected population if 𝑢1 = 0 and 

𝑢2 ≠ 0 (represented by the green line in Figure 9). Isolated birds 

will transfer to either the infected or recovered population, 

depending on the effect of treatment. Without treatment (𝑢1 ≠ 0 

and 𝑢2 = 0), isolated birds increase continuously then decrease 

after 85 days where the birds transfer to the infected population, 

as illustrated by the red line in Figures 9B–C. Applying isolation 

alone will reduce the infected population and prevent possible 

transmission of the disease to the susceptible population. 

However, due to the absence of treatment, birds will be released 

from isolation even though they are still infectious. This results 

in a rapid increase of the infected population after 85 days, as 

represented by the red line in Figure 9B. Our result suggests that 

isolation of infected birds without applying treatment is not 

sufficient to prevent the spread of H5N6 in the population.  

 

5.2 Immunization strategy 

 

Next, we consider immunizing the poultry population via a 

vaccine. Figure 10 illustrates the outcome of varying the relative 

cost of performing vaccination implementation control 𝐵3 and 

vaccine efficacy control 𝐵4 . In Figure 11, we portray the 

comparison using fixed control (red dashed line) and optimal 

control (blue solid line).  

 

In Figure 10, we observe that varying the relative costs (𝐵3 and 

𝐵4) of implementing the controls ( 𝑢3  and 𝑢4 ) significantly 
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affects the spread of H5N6 in the vaccinated population. As we 

increase the relative costs, the vaccine efficacy decreases 

(Figure 10E), and this makes the vaccinated population 

vulnerable to acquiring H5N6. As shown in Figure 10D, the 

effects of varying the relative costs to vaccination control is very 

close to zero (the control ranges from 0 to 0.04), and it has a 

minimal effect in the spread of the virus in the population. We 

can observe that the changes in the vaccine efficacy (Figure 10E) 

greatly affect the curves in the vaccinated and infected 

population (Figures 10B–C). As the relative cost of the vaccine 

efficacy increases, the value of 𝑢4 is lowered. Lower vaccine 

efficacy leads to rapid decline in the number of vaccinated birds 

and hence an increase in the infected population. 

 

Through the application of optimal control, we can observe that 

the diminishing effectiveness of the vaccine results in the spread 

of infection in the vaccinated population, as depicted in Figure 

11. After 120 days, the vaccine efficacy starts to decline, causing 

vaccinated birds to acquire the disease. Simulations shown in 

Figures 10–11 contribute to our understanding that immunizing 

the poultry population is not sufficient to prevent an outbreak. 

In using an optimal-control approach, we see that a successful 

immunization strategy highly depends on developing an 

effective vaccine. Note that, for the vaccination strategy, the 

cheapest vaccination is administered at a higher rate of vaccine 

efficacy control 𝑢4 (shown in Figure 11). 

 

5.3 Depopulation strategy 

 

We obtain simulations for applying a modified culling strategy 

that targets infected birds as well as high-risk susceptible birds 

that are in contact with infected birds. Figure 12 compares the 

difference in outcomes of applying optimal control versus fixed 

control. Figure 13 depicts the effect of changing the relative cost 

of implementing the culling strategy for susceptible and infected 

populations. In Figure 14, we investigate the discrepancies in 

applying the modified culling strategy for culling both 

susceptible and infected birds, culling only susceptible birds and 

culling only the infected birds. 

 

Integrating optimal control into a culling strategy results in a 

lower number of susceptible and infected birds compared to 

using a constant value, as portrayed in Figure 12. With optimal 

control, intensive culling occurred during the first 30 days of 

outbreak then slowed down over time. The decline in the 

numbers of both susceptible and infected birds occurs faster 

when optimal control is applied. In Figures 12A–B, 88% of 

susceptible birds and 63% of infected birds were culled within 

30 days to prevent the spread of H5N6 avian influenza virus. 

After 100 days, there are only 4% susceptible birds and 11% 

infected birds left. Our optimal-control results suggest that 

culling of susceptible and infected birds must be implemented 

rigorously in the first 30 days of the outbreak to prevent further 

spread of the infection. 

 

Even though the relative cost of culling increases for both 

susceptible and infected populations, we were able to control the 

outbreak and prevent further increase in the number of infected 

birds, as illustrated in Figure 13. We have lower values of culling 

controls for susceptible and infected populations (𝑢5  and 𝑢6 , 

respectively) when the relative cost of implementation increases, 

as depicted in Figures 13C–D. Thus, the higher cost of 

implementation of culling will result a higher number of 

susceptible birds but also more infected birds. Hence, varying 

the relative cost 𝐵5  and 𝐵6  from 100,000 to 900,000 will not 

affect the effectiveness of culling in preventing the spread of the 

H5N6 in the poultry population. 

 

 
Figure 12: Implementing the culling strategy with optimal control 
(blue solid line) and without optimal control or using constant 
parameter (red dashed line) in the population of susceptible (A) 
and infected (B) birds. Optimal-control values of culling 
frequency control for susceptible (C) and infected (D) birds over 
300 days. 

 
Figure 13: Application of culling strategy with optimal control to 
the population of susceptible (A) and infected (B) birds and 
susceptible-culling control (C) and infected-culling control (D), 
with varying values of 𝑩𝒊 , for 𝒊 = 𝟓, 𝟔, from 𝟏𝟎𝟎 𝟎𝟎𝟎 to 𝟗𝟎𝟎 𝟎𝟎𝟎 

birds. 

Administering a culling strategy for both susceptible and 

infected birds is more effective than culling only the infected 

birds, as indicated in Figure 14. Looking at the blue dashed line 

of Figure 14A, we have more susceptible birds if we cull only 

the infected population, but, as shown in Figure 14B, the 

infected population increases afterward. This implies that 

culling only the infected population is not enough to stop the 

spread of infection. We can infer that culling only the infected 

population can be successful if we can entirely eradicate the 

infected population. Currently, we cannot easily identify 

infected birds from the poultry population. Culling both 

susceptible and infected birds may lead to near eradication of the 

infected population, and due to the low number of susceptible 

birds, further spread of H5N6 would not be possible. Thus, 

culling both susceptible and infected birds is necessary to 

eliminate the spread of infection in the poultry population.  

 

In the 2017 Central Luzon H5N6 outbreak, it cost the country's 

poultry industry 2.3 billion pesos with around 160,000 infected 

poultry (Simeon, 2017). There is insufficient data for the actual 

cost of implementation of each strategy per poultry. Henceforth,  
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Figure 14: Simulation of culling strategy with the optimal 
approach and with consideration of using both susceptible 
culling control 𝒖𝟓(𝒕)and infected culling control 𝒖𝟔(𝒕) (black solid 
line), using susceptible culling control 𝒖𝟓(𝒕)  only (red dotted-

dashed line) and using infected culling control 𝒖𝟔(𝒕)  to the 
population of susceptible (A) and infected (B) birds. 

in this study, we can only present an abstract concept of the cost 

(based on the number of infected birds) and compare the cost 

from each strategy. Among the three strategies, we concluded 

that the modified culling strategy is the cheapest with the least 

number of infected birds after 100 days. For future work, 

collaborations with engineers can be established to build the 

actual facilities and compute the cost per unit of poultry. 

Table 1: Total cost of implementation and the number of 
infected birds after 100 days for each strategy. 

Strategies Total Cost 
Infected birds after 
100 days 

Isolation-
treatment 

5.0x104 
3.7x104 (reduced by 
50%) 

Vaccination 2.8x105 
8.9x104 (increased 
by 22%) 

Modified culling 8.1x103 
1.2x104 (reduced by 
84%) 

 

6. DISCUSSION 

Understanding and learning to control avian influenza is a 

crucial issue for many countries, especially in Asia. Avian 

influenza virus A (H5N6) is an emerging infectious disease that 

was reported in China in early May 2014 (Joob and Viroj 2015). 

In 2017, the Philippines reported an outbreak of H5N6 which 

resulted in a mass culling of 667,184 birds. After more than two 

years H5N6 reemerged, causing the depopulation of 12,000 

quails (OIE 2020). Lee and Lao (2017) proposed intervention 

strategies against the spread H5N6 virus in the Philippines. They 

suggested poultry isolation strategy over vaccination strategy in 

reducing the number of infected birds.  

There is limited study on the effects of isolation with treatment 

as a control strategy against the spread of avian influenza. 

Isolation is also used when adding new flocks of birds to the 

poultry farm in order to prevent possible transmission of disease 

to the current flock. We investigated the effects of isolation-

treatment strategy as a promising policy in controlling an 

outbreak. We modified the isolation model of Lee and Lao 

(2017) and emphasize the role of treatment in utilizing this 

strategy. We focused on the impact of isolation control 𝑢1 and 

treatment control 𝑢2 in applying this strategy. Isolating infected 

birds is an effective measure to reduce the spread of H5N6 in the 

population, as claimed by Lee and Lao (2017). We followed up 

confinement by applying treatment during isolation, which turns 

out to have a significant role in applying confinement. Through 

our simulation in Figures 7–9, we showed that transmission of 

H5N6 virus in the poultry population can be reduced by isolating 

at least 78% of the infected birds. In addition, at least 62% of the 

isolated birds must successfully recover from the infection 

within the first week. 

Using optimal-control theory, we showed that the success of 

vaccination is highly dependent on the effectiveness of the 

chosen vaccine. A less-effective vaccine will make vaccinated 

birds vulnerable to acquiring the virus. Vectormune AI is a 

rHVT-H5 vaccine which provides 73% protection against AIV 

H5 type (Kilany et al. 2014). In the study of Cornelissen and 

colleagues (2012), the NDV-H5 vaccine induced 80% immunity 

to chicken against H5N1. A fowlpox vector vaccine TROVAC-

H5 protected chickens against avian influenza for at least 20 

weeks (Bublot et al. 2006). Despite effective vaccines, there is a 

possibility for the effectiveness of the vaccine to decline over 

time, so we suggest that vaccination should be implemented 

together with other intervention strategies in preventing the 

spread of H5N6 in the population. 

Mass culling of birds is the current policy used when detecting 

an outbreak of avian influenza, which is applied to the infected 

farm and a short radius around the infected premises (OIE, 2020). 

We considered a modified culling strategy, as suggested in the 

study of Gulbudak and Martcheva (2013), which focused on 

culling infected birds as well as high-risk susceptible birds that 

are in contact with infected birds. We showed that culling only 

the infected birds is not enough to contain the spread of H5N6. 

Instead, culling 78% of susceptible birds and at least 63% of 

infected birds within 30 days can prevent an outbreak and avoid 

further transmission of the virus in the poultry population. 

The modified culling strategy has the cheapest implementation 

cost with the least number of infected birds after 100 days. It 

should be implemented if rapid eradication of the outbreak is 

necessary, with the understanding that the consequence is losing 

a large number of birds in the process. On the other hand, if we 

aim to conserve the poultry population, then the isolation with 

treatment strategy will potentially prevent the outbreak with 

most of the birds recovered from the infection. This strategy can 

be achieved through a rapid isolation of infected birds and a 

reliable treatment policy. Conversely, vaccination should be 

implemented only with other intervention strategies. 

Note that we used three different models for each strategy, which 

limits our comparison of the three control strategies. Future 

work will consider combinations of strategies and conduct 

numerical continuation studies to track both stable and unstable 

steady states and bifurcation points in the systems in order to 

gain better understanding and new discoveries of the overall 

dynamics of the epidemiological systems. 

Using optimal-control theory gives us a better understanding of 

H5N6 outbreak prevention. By applying optimal control to 

different strategies against H5N6, we have illustrated the effects 

of each policy, together with its respective implementation cost. 

Every intervention strategy against H5N6 has advantages and 

disadvantages, but proper execution and appropriate application 

is a significant factor in achieving a desirable outcome. 
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Appendix A. Variables and parameters 

 

Here, we describe each variable and parameter that we used in 

each model. 

 

Notation Description or Label 

𝑆(𝑡) Susceptible birds 

𝐼(𝑡) Infected birds 

𝑇(𝑡) Isolated birds 

𝑅(𝑡) Recovered birds 

𝑉(𝑡) Vaccinated birds 

𝑁(𝑡) Total bird population 

𝛬 Constant birth rate of birds 

𝜇 Natural death rate of birds 

𝛽 
Rate at which birds contract avian 
influenza 

𝐻 Half-saturation constant for birds 

𝛿 
Additional disease death rate due to 
avian influenza 

𝑝 Proportion of vaccinated poultry 

𝜙 Efficacy of the vaccine 

𝜔 Isolation rate of identified infected birds 

𝛾 Releasing rate of birds from isolation 

𝑓 
Proportion of recovered birds from 
isolation 

𝑐𝑠 Culling frequency for susceptible birds 

𝑐𝑖 Culling frequency for infected birds 

𝜏𝑠(𝐼) Culling rate of susceptible birds 

𝜏𝑖(𝐼) Culling rate of infected birds 

 

The initial conditions are based on Philippine Influenza A 

(H5N6) outbreak report given by the OIE (2020): 𝑆(0) =
407 837 and 𝐼(0) = 73 360. We calculated transmissibility of 

the disease (𝛽 = 0.025) using the basic reproduction number 

ℛ𝐴 in (5) and equating it to 3, the value of the basic reproduction 

number of AIV without intervention (Mills et al. 2004, Ward et 

al. 2009).We calculated parameter values that reduce the basic 

reproduction number below one and control the spread of AIV 

in the poultry population. 

 

 

 

 

 

 

 

 

 

 

Definition Symbol Value Source 

Constant birth 
rate of birds 

Λ 
2060

365
per day 

(Chong et 
al. 2013) 

Natural 
mortality rate 

𝜇 
3.4246 ×
10−4per day 

(Liu et al. 
2017) 

Transmissibility 
of the disease 

𝛽 
0.025per 
day 

Calculated1 

Half-saturation 
constant for 
birds 

𝐻 180 000birds 
(Lee and 
Lao 2018) 

Disease-
induced death 
rate of poultry 

𝛿 
4 × 10−4per 
day 

(Liu et al. 
2017) 

Proportion of 
vaccinated 
poultry 

𝑝 0.50 Calculated1,2 

Vaccine 
efficacy 

𝜙 0.90 Calculated1,2 

Waning rate of 
the vaccine 

𝜔 
0.00001per 
day 

Calculated1 

Isolation rate of 
identified 
infected birds 

𝜓 0.01per day Calculated1,2 

Release rate of 
birds from 
isolation 

𝛾 0.09per day Calculated1 

Proportion of 
recovered 
birds from 
isolation 

𝑓 0.5 Calculated1,2 

Culling 
frequency for 
susceptible 
birds 

𝑐𝑠 
1

60
per day Estimated2 

Culling 
frequency for 
infected birds 

𝑐𝑖 
1

7
per day Estimated2 

1Calculated means we compute this value using the basic reproduction 
number 
2These values will become the controls when optimal-control theory is 
applied. 
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Appendix B. Non-existence of backward bifurcation 

 

Appendix B.1. Vaccination 

In showing that a backward bifurcation does not exist for the 

vaccination model, we solve for 𝐼𝑉
∗ =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
such that 

𝑎 = −(𝜇 + 𝛿)[𝜇𝛽(1 − 𝜙) + (𝜇 + 𝜔)(𝜇 + 𝛽) + 𝛽2(1 − 𝜙)], 
𝑏 = 𝛽2Λ(1 − 𝜙) + 𝜇𝐻(𝜇 + 𝛿)(𝜇 + 𝜔)(ℛ𝑉 − 1)

− 𝐻(𝜇 + 𝛿)[𝜇𝛽(1 − 𝜙)
+ (𝜇 + 𝛽)(𝜇 + 𝜔)], 

𝑐 = 𝜇𝐻2(𝜇 + 𝛿)(𝜇 + 𝜔)(ℛ𝑉 − 1). 
 

Theorem B.1.The vaccination model (3)  has no endemic 

equilibrium when ℛ𝑉 ≤ 1  and has a unique endemic 

equilibrium when ℛ𝑉 > 1. 

Proof. We obtain two possible endemic equilibria 𝐸𝑉1

∗  and 𝐸𝑉2

∗  

for the vaccination model. From (𝐵. 1) , we establish the 

relationship between ℛ𝑉 and 𝑐 such that 

 

ℛ𝑉 > 1 ⟺  𝑐 > 0       ℛ𝑉 = 1 ⟺  𝑐 = 0      ℛ𝑉 < 1 ⇔  𝑐 < 0 

From (𝐵. 1), it is clear that 𝑎 < 0. Consider the cases when 𝑐 >
0 , when 𝑏 > 0  and 𝑐 = 0  or 𝑏2 − 4𝑎𝑐 = 0,  and when 

𝑐 < 0, 𝑏 > 0, and 𝑏2 − 4𝑎𝑐 > 0. 

 

Case 1: 𝑐 > 0 

 

When 𝑐 > 0, we have ℛ𝑉 > 1. Since 𝑎 < 0, it follows 

that 

𝐼V1

∗ =
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
< 0  

𝐼V2

∗ =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
> 0. 

 

When ℛ𝑉 > 1 the infected population (𝐼V1

∗ ) of the 

endemic equilibrium (𝐸𝑉1
∗ ) does not exist, and we have a 

unique endemic equilibrium 𝐸𝑉2
∗ . 

 

Case 2: 𝑏 > 0 and either 𝑐 = 0 or 𝑏2 − 4𝑎𝑐 = 0 

Given that 𝑏 > 0, we consider the case when 𝑐 = 0 and 

when𝑏2 − 4𝑎𝑐 = 0. 
 

Case 2A: 𝑐 = 0 

Since 𝑐 = 0, it follows that 𝐼V1

∗ = 0 and 𝐼V2

∗ > 0. Note that 𝐼V1

∗ =

0 leads to the DFE. Hence, if 𝑏 > 0 and 𝑐 = 0, then 𝐼V2

∗ > 0, and 

we have a unique endemic equilibrium 𝐸𝑉2

∗ .  

 

Case 2B: 𝑏2 − 4𝑎𝑐 = 0 

Considering that 𝑏2 − 4𝑎𝑐 = 0, it follows that 𝐼V1

∗ = 𝐼V2

∗  and 

𝐼V1

∗ , 𝐼V2

∗ > 0. Thus, if 𝑏 > 0 and 𝑏2 − 4𝑎𝑐 = 0, then we have a 

unique endemic equilibrium 𝐸𝑉1

∗ = 𝐸𝑉2

∗ . 

 

Case 3: 𝑐 < 0, 𝑏 > 0, and 𝑏2 − 4𝑎𝑐 > 0. 

 

From the assumption that 𝑎 < 0 and 𝑐 < 0, it follows that  

 

𝐼V1

∗ =
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
> 0        𝐼V2

∗ =
−𝑏−√𝑏2−4𝑎𝑐

2𝑎
> 0 

 

Thus, we have two endemic equilibria 𝐸𝑉1

∗ and 𝐸𝑉2

∗ ,  which 

implies that a backward bifurcation may possibly occur 

whenever 𝑐 < 0, 𝑏 > 0, and 𝑏2 − 4𝑎𝑐 > 0. 

However, given the values of 𝑏 and 𝑐, we can show that when 

𝑐 < 0 , we cannot obtain 𝑏 > 0 , which we prove by 

contradiction. Suppose that 𝑐 < 0. By definition of 𝑝 and 𝜙, the 

value of both parameters ranges from 0 to 1. From (𝐵. 1), it 

follows that Λ𝛽 <
𝜇𝐻Δ

Θ
, where we define Θ = (𝜇 + 𝜔 −

𝑝𝜇𝜙)and Δ = (𝜇 + 𝛿)(𝜇 + 𝜔). 

 

Using (𝐵. 1)  with 𝑏 > 0 , we get Λ𝛽2(1 − 𝜙) + Λ𝛽Θ >
2𝜇𝐻Δ + 𝛽𝐻Δ + 𝜇𝐻𝛽(𝜇 + 𝛿)(1 − 𝜙) . By simplifying, we 

obtain 

 

𝜇𝛽(𝜇 + 𝜔)(1 − 𝜙)

Θ
> 𝜇(𝜇 + 𝜔) + 𝛽(𝜇 + 𝜔) + 𝜇𝛽(1 − 𝜙). 

 

 

In both extreme values of 𝜙, it follows that 

 

0 > 𝜇(𝜇 + 𝜔) + 𝛽(𝜇 + 𝜔). 
 

Since 𝜇, 𝜔, 𝛽 ≥ 0 , it implies that 𝜇(𝜇 + 𝜔) + 𝛽(𝜇 + 𝜔) ≥ 0 , 

and we have a contradiction. Results above suggest that two 

endemic equilibria do not exist when ℛ𝑉 < 1 , since the 

condition 𝑐 < 0, 𝑏 > 0, and 𝑏2 − 4𝑎𝑐 > 0, cannot be satisfied. 

From Cases 1 to 3, it is evident that the vaccination model has 

no endemic equilibrium when ℛ𝑉 < 1  and a unique endemic 

equilibrium when ℛ𝑉 ≥ 1. 

 

Appendix B.2. Culling 

 

To show that a backward bifurcation does not exist for the 

culling model, we solve for 

𝐼C
∗ =

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 such that 

𝑎 = −(𝜇 + 𝛿 + 𝑐𝑖)(𝜇 + 𝑐𝑠 + 𝛽), 
𝑏 = 𝜇𝐻(𝜇 + 𝛿)(ℛ𝐶 − 1) − 𝑐𝑖𝜇𝐻 − 𝐻(𝜇 + 𝛿)(𝜇 + 𝑐𝑠 + 𝛽), 
𝑐 = 𝜇𝐻2(𝜇 + 𝛿)(ℛ𝐶 − 1). 
 

Theorem B.2. The culling model (4)  has no endemic 

equilibrium when ℛ𝐶 < 1  and has a unique endemic 

equilibrium when ℛ𝐶 > 1. 

 

Proof. We obtain two possible endemic equilibria, 𝐸𝐶1

∗  and 𝐸𝐶2

∗ , 

for the culling model. From (𝐵. 3) , 𝑎 < 0 , and we consider 

cases where ℛ𝐶 < 1, ℛ𝐶 = 1, and ℛ𝐶 > 1. 

 

Case 1: ℛ𝐶 < 1 

When ℛ𝐶 is below unity, it follows that 𝑐 < 0 and 𝑏 < 0. Given 

that 𝑎 < 0 and 𝑐 < 0, we have 

 

𝐼C1

∗ =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
< 0   𝐼C2

∗ =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
< 0. 

 

Thus, in our case when ℛ𝐶 < 1 , we have no endemic 

equilibrium. 

 

Case 2: ℛ𝐶 = 1 

 

When ℛ𝐶 = 1 , we have 𝑐 = 0  and 𝑎 < 0 . It follows that 

√𝑏2 − 4𝑎𝑐 = 𝑏. Since 𝑎 < 0, we have 

 

𝐼C1

∗ =
−𝑏 + 𝑏

2𝑎
= 0             𝐼C2

∗ =
−𝑏 − 𝑏

2𝑎
< 0. 

 

Hence, when ℛ𝐶 = 1, we have no endemic equilibrium. 

 

Case 3: ℛ𝐶 > 1 

When ℛ𝐶 is above the unity, it follows that 𝑐 > 0. Given that 

𝑎 < 0 and 𝑐 > 0, we have 

(𝐵. 1) 

 
(𝐵. 2) 

 

(𝐵. 3) 
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𝐼C1

∗ =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
< 0       𝐼C2

∗ =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
> 0. 

 

Hence, when ℛ𝐶 > 1, we have 𝐼C2

∗ > 0 and a unique endemic 

equilibrium 𝐸𝐶2

∗ . 

 

 

Appendix C. Proof of Theorem 4.2 

 

Proof. The existence of optimal control (𝑢3
∗ , 𝑢4

∗ ) is given by the 

result of Fleming and Rishel (1975). Boundedness of the 

solution of (3) shows the existence of a solution for the system. 

We have nonnegative values for the controls and state variables. 

In our minimizing problem, we have a convex integrand for 𝐽𝑉 

with respect to (𝑢3, 𝑢4). By definition, the control set is closed, 

convex and compact, which shows the existence of optimality 

solutions in our optimal system. We use Pontryagin's Maximum 

Principle to obtain the adjoint equations and transversality 

conditions. We differentiate the Hamiltonian (16) with respect 

to the corresponding state variables as follows: 

 
𝑑𝜆𝑉1

𝑑𝑡
= −

𝜕𝐻𝑉

𝜕𝑆
,

𝑑𝜆𝑉2

𝑑𝑡
= −

𝜕𝐻𝑉

𝜕𝑉
,

𝑑𝜆𝑉3

𝑑𝑡
= −

𝜕𝐻𝑉

𝜕𝐼
, 

 

with 𝜆𝑉𝑖
(𝑡𝑓) = 0  where 𝑖 = 1 ,2, 3 . Using the optimality 

condition 

 
𝜕𝐻𝑉

𝜕𝑢3
= 𝐵3𝑢3(𝑡) − 𝜆𝑉1

Λ + 𝜆𝑉2
Λ = 0 and  

𝜕𝐻𝑉

𝜕𝑢4
= 𝐵4𝑢4(𝑡) + 𝜆𝑉2

𝛽𝑉𝐼

𝐻 + 𝐼
− 𝜆𝑉3

𝛽𝑉𝐼

𝐻 + 𝐼
= 0, 

 

we derive the optimal controls (17). We consider the bounds for 

the control and conclude the characterization for 𝑢3
∗ and 𝑢4

∗ 

 

𝑢3
∗ = min {1, max {0,

(𝜆𝑉1−𝜆𝑉2)Λ

𝐵3
}} and 

𝑢4
∗ = min {1, max {0,

(𝜆𝑉3
− 𝜆𝑉2

)𝛽𝑉𝐼

𝐵4(𝐻 + 𝐼)
}} . 

 

 

Appendix D. Proof of Theorem 4.3 

 

Proof. Analagous to the previous proof, we differentiate the 

Hamiltonian (19)  with respect to the corresponding state 

variables as follows: 

 
𝑑𝜆𝐶1

𝑑𝑡
= −

𝜕𝐻𝐶

𝜕𝑆
,       and       

𝑑𝜆𝐶2

𝑑𝑡
= −

𝜕𝐻𝐶

𝜕𝐼
, 

 

with 𝜆𝐶1
(𝑡𝑓) = 0  where 𝑖 = 1, 2 . We consider the optimality 

condition 

 
𝜕𝐻𝐶

𝜕𝑢5
= 𝐵5𝑢5(𝑡) −

𝜆𝐶1𝑆𝐼

𝐻+𝐼
= 0   and   

𝜕𝐻𝐶

𝜕𝑢6
= 𝐵6𝑢6(𝑡) −

𝜆𝐶2𝐼2

𝐻+𝐼
= 0, 

 

to derive the optimal controls (20). We consider the bounds of 

the controls and get the characterization for 𝑢5
∗ and 𝑢6

∗ 

 

𝑢5
∗ = min {1, max {0,

𝜆𝐶1𝑆𝐼

𝐵5(𝐻+𝐼)
}} and 

𝑢6
∗ = min {1, max {0,

𝜆𝐶2
𝐼2

𝐵6(𝐻 + 𝐼)
}}.  
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